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SEMICONDUCTOR DEVICES FOR OPTICAL COMMUNICATION IN i _m

BAND OF WAVELENGTH

Yosuharu Suematsu and Kenichl !ga

i. Introduction /27"

In the research on fiber optic communication which is

achieving a remarkable degree of development in the reQent years,

systems for practical use have been developed for 0.8 _m band

of wavelength, thus completing the so-called first generation.

Now, the focus of research and development is about to start

moving to the so-called long wavelength band with wavelengths

of 1-1.8 _m, where loss of optic fiber is extremely small,

which might be regarded as the second generation of fiber optic

communication. The inception of this optical communication

in the long wavelength band is the prediction that if the

absorption by water is removed from silica fibers, the greater

degree of reduction in loss could be achieved for longer wave-

lengths, based on determinations of optic fiber losses over

the long wave length zone by Maurer and others [i], followed

by the development of manufacturing of silica fibers by the

CVD method [2]. At the same time, research on new semiconductor

material with the width of exclusion zone of i _m has also been

started [3-4]. Subsequently, in 1976, cooperative research by

Japan Telecommunication Corporation and Fujikura Densen, Co.,

developed a revolutionary fiber with transmission loss of

0.5dB/Km at the wave length of 1.3 _m [15], which resulted in

worldwide attention attracted to the optical communication

devices of the sec0nd generation , such as the light source and

* Numbers in the margin indicate pagination in the foreign text.
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optical wave detector for this wavelength band.

The characteristics of the second generation long wave_

length optical communication device have been described in

reference [16], but we would like to summarize them in our

own way of thinking: (I) optical transmission with extremely

small loss is possible, so that exceedingly long relay distance

could be attained. The transmission loss of optical fibers is

shown in Figure I (a). With a wavelength of 1.6 um, a loss

of 0.2dB/Km was achieved at the end of 1978 (Ibaraki Communica-

tion Laboratory, Japan Telecommunication Corporation [17].;

(2) because of the small loss of IdB/Km or less over a'wlde

range of wavelengths from 1.1-1.8 um, the multiplex wavelength

system [18] in which a large number of different wavelengths

is transmitted on a single fiber could be utilized_ so that the

high frequency of optical wave frequency could be used effective-

ly; (3) as shown in Figure I, the core diameter that fulfills

the condition for unitary mode transmission of optical fibers

could be taken at relatively large values; (4) the Rayleigh

scattering which is one of the factors in optical loss in laser

and optical circuits becomes smaller in the long wavelength zone,

in proportion to _-4; (5) Garnet type materials for optical

isolator become transparent above 1.2 um, which was not easily

achieved in the first generation (1). (In Figure I (c), optical

absorptive losses against wave deviation at 45° rotation_

necessary when materials such as YIG are used in an isolator [20]_

are shown as new performance index). Lastly, just to make an

additional point, (6) over this range of wave lengths _ the

material scatter, which acts as one of the factors in limiting

the range of transmission band of optical fibers, could be heldO

within _ 3ps/Km (distance). A (width of wavelength) [21].

Furthermore, when wavelength increases, as could be seen

from Figure i (a), transmission loss increases due to the effects
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(a) Transmission loss of optical fibers,
(b) Fiber core diameter of unified mode, 2a,
(c) Loss constant to deviated wave surface

rotation of 45 ° Faraday rotation device.

Figure I. Characteristics of optical devices in long
wavelength zone



specific infrared absorption due to molecular vibration of

Si02 and Ge02, which is a dopant. However, materials such as

Csl which become transparent with longer wave lengths (0.OldB/

Km or less), are being studied as optical guides for medical

use [22]. Thus, optical communication in longer wavelength

areas such as _=2-i0 um, utilizing the advantages as noted in

(3) and (4) above, is not impossible. However, with an increase

in wavelength , the energy of photon hf (h: Planck's constant,

f: frequency) decreases. At the wave length of i0 um, it is

0.12eV. On the other hand, thermal energy kT (k: Boltzmann

constant, T: absolute temperature) is 0.03eV at 70°C_ which is

a high temperature in the field of communication, so that it

becomes not negligible in comparison with the photon energy of

long wavelengths. Thus, effects appear on optical detectors

and on thermal characteristics of lasers. Accordingly_ lasers

and optical detectors based on principles different from those

for the optical devices which were effective in the second and

third generations become necessary, so that the area of

_>2 um could be termed optical communication of the fourth

generation.

In this article, semiconductor devices for the 1-1.8 um

band are discussed, but one should not forget the accumulation

of basic research which led to the recognition of the excellent

advantages of this wavelength band.

2. Lattice-adjusted four-dimensional semiconductor crystals.

2.1. Crystal formation and width of exclusion zone.

No two-dimensional semiconductor crystals with the width

of exclusion zone corresponding to the I um wave length band

noted above, are available, so that it is necessary to use

three or four dimensional crystals. However_ for optical
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semiconductor devices with high electric current density

(_SKA/cm 2 _m) and high optical power output (_i mW/_m 2)

activation such as semiconductor lasers and LEDs_ and photodiodes

for low noise optical detection, it is important to carry

out adjustment of lattice constants between the base plate

crystal used for crystal growth and the four-dimensional crystals

that serve as the activated layers. For example_ the lattice

maladjustment between Ga As and Gal_xAlxAS (x=0.3,0.5) used
in the GaAs system of semiconductor lasers is around 0.03-0.05%.

On the other hand, four-dimensional mixed crystals consisting

of four elements could alter the width of the exclusion zone

greatly while perfect lattice adjustment with two dimensional

crystals used as the basal plate,is maintained. In Figure 2_

the relationships between various two-dimensional crystals with

lattice constants of four-dimensional crystals they fo:_'m,and

width of the exclusion zone are shown. For example, in
O

Gaxlnl_x ASy PI-y with InP(a=5.8696A) as the basal plate, changing
of compositions along the abscissa enables changing of widths

of the exclusion zone over the range of 0.75<_Eg_l.35eV. As
the mixed crystals corresponding to the so-called i _m band,

the following could be considered [23]. Substances in the paren-

theses represent basal plates. With these, crystal growth is

possible with lattice maladjustment of + 0.03% or below.

(i) Ga,h't-_AsyP,-,(InP):0.92<2s<:l.67nm

( 2 ) (;a,_xAIxAs_Sb _y(GaSbO: 0.8_',lg< t. 7 mn!

( 3 ) Ga.dnt ._As_,Sb__,(lnA_ : 1.68<_o<2 am

( 4) Ga,t,,_,a,,Sb._,CG,Sb),,:i,.s<a,<21,._::

For the past 3 years, hetero-combination of the first system,

that is Gaxlnl_ x ASy Pl-y with InP as the basal plate_ and InP
have been studied mainly because of the excellence in crystal

formation for use as the material for lasers and photodiodes.
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Figure 2. Lattice constants and'exclusion band widths of
III-V group compound semiconductors

Thus, the conditions of crystal growth of this system /29

are summarized below.

2.2 Crystal growth in GalnAsP/InP.

The cross sectional structure of a wafer for a semicon-

ductor laser with GalnAsP as the laser activation layer and

InP as the clad layer, is as follows (also, see Figure 6):

First, n-type InP is placed over the InP basal plate_ over which

GalnAsP without doping , and the p-type InP layer as the clad

layer are superimposed [24]. At times, a p-type GalnAsP layer

is placed over as a cap layer, to form excellent ohmic electrodes

[25]. For measurements of the cross section of the activation

layer, the cleaned cross section is stain-etched with a mixture

solution of K3Fe(OH) 6 and KOH, and the surface is measured
by SEM.

In order to obtain the multilayered thin film wafer as
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described above, various methods such as vapor phase epitaxy,

liquid phase epitaxy, and molecular beam epitaxy have been

tried. Of these, the liquid phase epitaxy method of crystal

growth is most popularly used, and renders high quality wafers

for lasers. Thus, this method is summarized here. To grow

a multilayered thin film of Gaxlnl_ x ASyPl_y by the liquid

phase epitaxy method, solid phase extraction from a supercooled

solution using a slide board, similar to a GaAIAs laser, is

utilized. Usually, In is used as the solvent, and GaAs, InAs,

and InP as the sources for Ga, As, and P. The deviation ex-

traction coefficient kn_ 2xNs/XN I is used as a parameter to

show the proportions of respective components of the solid

phase four dimensional crystal xNS(N-Ga, In, As, P) extracted

from the liquid phase components XNl in the solvent. With

specific components X=XGaS , y=_As s, kN takes different values.

In order to understand the conditions for crystal growth, it

is necessary to construct phase diagrams centered around knowing

kN. Several studies have been carried out over the past 2-3

years in this direction [6, 9, 24-33], elucidating the conditions

for crystal growth of GalnAsP. From these, experimentally

obtained liquid phase components XNl , with supercooling method

with temperature of starting crystal growth of 630-650° I are

shown in Figure 3. From the figure, the amount of source crystals

to be dissolved in the In solution could be determined, The

studies cited here are recent ones based on systematic experi-

ments, but it should be remembered that in the early_ pioneer-

ing studies, a great deal of work was expended in determining

the amounts of source crystals to be dissolved. As could be

seen from the figure, some differences are noted due to temper-

atures for starting of crystal growth, and method of cooling.

Scattering seen in similar systematic studies may be due to errors

in weighing of source crystals as well as error in measuring of

solid phase component ratio.
/
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Figure 3. Amounts of liquid phase components Xnl (N=Ga, In,
As, P) against As solid phase components of

GaxInl_xASyPl_y

(a) 635°C biphasic solution supercooling (31)

(b) 637°C step cooling (29)

(c) 650°C equilibrium cooling (30)

(d) 650°C step cooling (26)

(e) 650°C equilibrium cooling (32)

Based on the liquid phase components as described above,

GalnAsP crystals with good lattice adjustment with the InP basal

plate should grow, but since there are some differences in

absolute temperatures of the basal plate and solution caused

by different furnaces used, to achieve complete lattice adjust-

ment and select the oscillating wavelength exactly as designed_

fine tuning is carried out by slightly changing concentrations

of Ga [34] or As [35]. Theoretically, it is possible to make

Aa be zero. The separation capability of the x-ray diffraction

meter in general use is about +0.03%, so that the degree of
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adjustability has the limitation of this degree. When the

lattice of a four-dimensional crystal is not adjusted with that

of InP, distortion of the lattice is seen mainly in the direction

perpendicular to the plane of the basal plate, and virtually no

changes are seen in the direction parallel to that plane [34],

Thus, it is considered that if the direction of the plane chosen

for x-ray diffraction is taken in the direction perpendicular

to the basal plate such as (400), the degree of maladjustment

could be measured quite well.

In terms of the direction of the plane of the InP basal

plate used in crystal growth, in the early phase of research,

the use of the (i00) plane resulted in the formation of small

holes of I _m size, and poor reproducibility, so that the (III)B

plane has mainly been used. However, since Hsieh [36]_ and

Itaya and the authors [37] successfully constructed semiconduct-

or lasers of equally good performance level, using the (I00)

plane as the basal plate, the (i00)plane is now being used

frequently. The advantages of the (I00) plane include the ease

of cleavage, ease of crystal growth in terms of selective crystal

growth, etching and lattice adjustment, as well as the fact /30

that technology accumulated by GaAs method could be utilized

for forming into various shapes by etching.

Also, the relationship between the solid phase component

ratios x=XGa s and y=XAss of four=dimensional crystals formed

with lattice adjustment, and width of the exclusion band Eg are
extremely important in practical use. These are determined by

substituting experimental values into Vegard's law. Using

a recent report [38], the relationship between x and y in condi_

tion of lattice adjustment could be expressed as

O.466y (O<z._ 1)_= 1.o_-o.o',__ ( 2)

and the width of the exclusion band E could be given by the

g 9



solid phase composition ratio y of As, thus"

In Figure 4, E or the corresponding wavelength Xg_ are showng .

3. Semiconductor lasers

For semiconductor lasers of 1-1.7 _m band_ the structure

and characteristics, mainly centered on the GaInAsP/InP system_

are summarized.

3.1. Area of oscillating wavelength and threshold electric

current

The width of the exclusion band of Gax Inl_xASy Pl-y
could be expressed as an approximation by the equation (3).

The range of possible wavelengths includes 0.92<_g<l,67_m.
A semiconductor laser of double hetero structure with InP as

the clad layer, as shown in Figure 6, has been materialized

over the range of wavelengths 1.1<_<1.67 _m.

In Figure 5, threshold electric current density per unit

activated layers Jth/d of the Ga x Inl_xASy Pl_y/InP laser is
shown. With liquid phase epitaxy, about 4.5KA/cm 2 _m have

been achieved for 1.1<_<1.55 _m [24, 25, 33, 35, 39, 41]. For

the maximum wavelengths of x=0.466, y=l, with the liquid phase

method, the density is about 12kA/cm 2 wm [42] for the GaInAsP/

GaInAs/InP structure, and 8kA/cm 2 Bm [33] for the InP/GaInAsp/

GalnAs/InP structure. However, with the molecular beam method_

the value is lowered to the neighborhood of 5kA/cm 2 _m [43].

Also, for lasers of 1.2<_<1.4 _m made by gaseous phase epitaxy,

about 6kA/cm2' _m has been achieved [38], demonstrating the

high quality crystals equivalent to those made by the liquid

phase method. Accordingly, it appears possible to manufacture

l0



Figure 4. Width of exclusion band E against
: g

solid phase component ration X=XGaS , Y=XAsS

O_
- _ 20

_ Io, _ I....."-11o

.- r . Yamam,,Io;'_','_:J• Arai . "' |
•_-I _ l- x (;e.,:" n _aka_,,.... • [

._ _ ' _" | • Coleman'_,:'"' . Miller -,"' - 1
.l.J_ F '_Nuese._" r,d_O.l_O.2/Am)

_ _ I- _ _:_.,_>,
,;:_ 51 .. -o,_ ql 'b ...... • ......... " -15 -" "" _','_
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Figure 5. Threshold electric current density Jth/d

that corresponds to the thickness of unit activated

layer of GalnAsP/InP laser. In terms of carrier

concentration, 5kA/cm 2 pm corresponds to about 3

x 1016/cm 3.
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lasers with low threshold electric current over almost all

areas of components of this four-dimensional material_

Variations of threshold electric Current density Jth in
terms of thickness of the activated laser d have been studied

[41, 45, 46]. At present, the minimum value is present in

the neighborhood of d=0.1_0.2 pm, with Jth=l [45]_2kA/cm 2 [41].
A low value such as 0.78 kA/cm 2 for d=0.13 pm has been recorded.

Usually, the activated layer is left without doping on purpose_

but since Zn that diffuses fast is frequently used as a dopant

in the p type InP layer of layer III, diffusion into the activated

layer during crystal growth could sometimes occur_ precluding

normal hetero combination. Especially with a thin activated

layer (less than 0.i _m), the selection of Zn concentration

in accordance with value of d could lead to the reduction of

threshold electric current [45]. Cd has also been tried as a

dopant [43].

It is desirable to minimize impurity concentrations in the

activated layer. The reason for this is that the yield differ_

ence in the vertical mode increases, and hole burning becomes

less likely to occur [47], making the single vertical mode /31

oscillation at the time of CW quite easy.

The i_dex of refraction of GalnAsP for _=i_3 pm is n=3.5 [48,

66], and that for InP is n=3.23 [49]. It follows that the

difference in specific refraction index, which serves as an index

for sealing-in effect of light, A=(nl-n2)/nl=717%. This_ in

comparison to x=0.4 for Gal_xAlxAs/GaAs _ is quite large.

3.2. Structure of stripe lasers

With semiconductor lasers, it is customary to form a stripe

type activated layer with 2-15 Bm width, in order to achieve

the stabilization of horizontal mode_ the improvement of

12



linearity of the electric current to light power output

characteristics, and the unification of vertical mode. Methods

of construction of several types of stripe laser in the

GaAs/GaAIAs laser have already been established [50], Similar

stripe construction has been tried for the GalnAsP/InP laser.

Also, entirely new types have been proposed,

An example of an electrode stripe, which is one of the

frequently used stripe constructions, is shown in Figure 6,
+

The p layer of GalnAsP [25] is often provided in order to improve

ohmic contact with the anode. Examples of other strlpe-type

structures are shown in Figure 7. Of these, (a)_(f) possess

the optical wave conduction function in the horlzontal'direction

as well by difference in refractory rates, so that the horizon-

tal mode is stable when electric current is increased and verti_

cal mode is also highly likely to be unified. Figure 8 shows

the spectrum of the electrode stripe type GalnAsP/InP laser and

examples of measurements of electric current versus power output

[54].

Typical action parameters of the GalnAsP/InP stripe lasers

include: voltage = 0.9V, electric current 100_200mA, resistance

i-2_, power output = several mW. Heretofore, experiments have

been performed mainly with the system of k=l.3 _m, but approxi_

mately similar characteristics could be expected for i,i_1.55 _m,

For the 1.6 _m band, further studies are needed for areas such

as improvements in methods of crystal growth,

3.3. Thermal characteristics

A unique characteristic of semiconductor lasers is that

with an increase in the electric current entering, a threshold

value is reached as shown in Figure 8(b), For higher electric

current, efficiency of luminescence becomes exceedingly great,

If threshold electric current density at temperatures T _ and T

13
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Figure 6. Commonly used electrode stripe or planar
stripe type GalnAsP/In laser. (In practical use, this
is frequently mounted with the anode facing downward).

i - light; 2 - cathode; 3 - diffusion; 4 - anode; 5- stripe;

6 - surface; 7 - basal plate
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Figure7.Examples of Cross Sectional Structure of
Stripe Type GaInAsP/InP Lasers
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Figure 8. Examples of (a) spectrum and (b) electric
current-optlcal power output characteristics of
GalnAsP/InP laser [511

are designated respectively as Jth (T') and Jth (t), then their
relationship could be expressed as: /32

z,j(T)=J,,,('Z,)c,,p[(z'- T')IT.] (4)

Here, T is the characteristic temperature, which is the tempera-
0

ture where Jth becomes e times as great when thermal elevation
T-T' is T

0

There are two characterisitic experimental facts related

to the thermal characteristics of threshold values for GalnAsP/

InP lasers° The first is the rapid decrease in T in the neigh-
O

borhood of room temperature [35, 57]. This is small_ for

example, in comparison with 100-120K for GaAs/GaAIAs laser_ and

improvements are needed for practical use. For high temperatures

above room temperature, leakage of electric current for the

15



hetero barrier is also possible, causing further increases in

the threshold value. This effect has been measured by lasers

with differing hetero barriers made by the vapor phase growth

method. Figure 9 shows the ratio of the increase of threshold

electric current density from 22°C of GalnAsPilnP lasers of

differing oscillation wavelengths at 70°C [44]. It could be

seen that the shorter the wavelength (that is, smaller hetero

barrier), the poorer the characteristic temperature. However_

at _>1.3 um, the characteristic temperature could be converged

to the level equal to that for a GalnAs three-dimensional laser.

On the other hand, the temperature fluctuation of'oscilla-
O

ting wavelengths is about 3.5-4A/K [35, 53, 58], which is some-

what greater than that for GaAIAs lasers. However, with

special constructions such as distribution Bragg reflection
O

type (DBR), it becomes 0.7'0.8A/K [48].

3.4. Tests for durability of devices

The most important factor, above all else, for optical

devices is their reliability. This newly developed material

also has been studied for its durability from the inception.

Fortunately, with GalnAsP/InP lasers, it was possible to find

material with relatively long durability from the beginning of

research, and it was felt that the material is of quite good

quality. In addition, despite the high value of i04-i08/cm 2

(_103/cm 2 with GaAIAs system) of the transposition density of

InP crystals which are base plates, as etch pit density, devices

with long durability have been made. This is appreciably

differentfrom the GaAIAs system. Continuous action at room tempera_

ture exceeding i0,000 hours with GalnAsP/InP lasers for i_3 um

made with the (i00)basal plate using the liquid phase method

has been confirmed [51]. The spectrum shown in Figure 8 is one
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Figure 9. Degree of elevation of threshold value of
GalnAsP/InP laser, by vapor phase growth method[tl II ]
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Figure i0. Direct modulation characteristics of GalnAsP/InP
laser (1=1.3_m) [68]
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Figure ii. Pulse modulation wave form of GalnAsP/InP
• (_=1.3 _m) (detected by GeAPD [made by Fujitsu])
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after 7,800 hours. Also, with GalnAsP/InP lasers made by the

vapor phase method, continuous testing at room temperature

for 1,500 hours has been carried out [441, as well as high

temperature acceleration tests at 70°C.

In the future, research for devices with greater reliability

will continue through the elucidation of the mechanism of

deterioration which is thought to be somewhat different from

that of GaAIAs, development of InP basal plate with small

amount of transposition [59], improvement of electrodes, and

protection of mirror surfaces. Also, the material is thought to

have potential for such improvements. 0

3.5. Modulation and device characteristics

The length of recombination durability of the small number

of carriers injected to the activation layer, Ws' is an important
parameter in determining the upper limit of the direct modulation

frequency, so that interest has been focused on these new four-

dimensional crystals from the inception. The attempted methods

for the determination of this parameter include: (1) the method

of measurement by elevations of pulse amplitude and threshold

value when narrow width pulse electric current is injected [37],

and (2) the method of measurement by the dependency of resonant

frequency on injected electric current [60, 61], and the method

by computing from the delay in oscillation time with pulse

excitation of electric current with fast standing up time [60,

61]. Compiling these results, it has been demonstrated that

•s=2-3ns for a laser of _=1.2,1.3 wm, and the temperature depend-
ency of _ resembles that of a Ga As laser [53].

s

From the foregoing, it could be expected that direct modula-

tion to several GHz is possible •with GaInAsP/InP lasers_ similar

to Ga As lasers [60], and actual experiments on high speed pulse
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modulation [62] and measurements of frequency dependency on

the degree of modulation [63] have been carried out. Figure iG

shows the degree of modulation when a laser with _=1.3 _m is

sine wave modulated. It shows the band area of over 2GHz for

I/Ith=!.3, confirming the prediction from the value of Ts. /33
Figure Ii is an example of the optical wave form when pulse

modulation is carried out, showing that pulse amplitude of around ,

250ps is obtained. *

As has been shown in Figure 6, the expansion of the light

beam of a semiconductor laser is great in the direction perpendi-

cular to the activated layer. This angle of expansion 2 A0

is inversely proportional to the spot size of the resonant mode,

so that by making the thickness of the activated layer exceeds..

ingly small, the spot size could be increased_ and A0 decre_sed0_

When d=0.05_m, about 23° is obtained [45], and even when d=0.13

_m, it is about 40°, which is equal to or less than for GaAs laser.

3.6. Development of new methods of manufacturing_ material and
models

For the method of manufacturing wafers for GalnAsP/InP

lasers, the liquid phase expitaxy noted above is being firmly

established with the completion of phase diagram almost attained.

With wavelengthband of i.i-1.15 _m, wafers with threshold electric

current density of 4.5 A/cm 2 _m could be constructed. The

minimal threshold value is about iKA/cm 2 for thickness of activated

layer d=0.1-0.2 _m. On the other hand, basic research on construct-

ion of wafers by vapor phase epitaxy has been carried out, and

at the International Convention on Semiconductor Lasers at the

end of October, 1978, the first report of successful oscillation

with a GalnAsP/InP laser was given, according to which Jth=7kA/
.

cm _m or thereabouts, thus demonstrating wafers comparable to
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those made by the liquid phase method [44]. Since large size

wafers for mass production could be constructed, and good

control of film thickness for uses such as optical cumulative

circuits could be attained, this is an exceedingly noteworthy

method of production.

With Gaxlnl_xASyPl_y , if y=l, then GalnAs that corresponds
to the maximum wavelength of X=1.65 pm could be obtained. This

is a three-dimensional crystal without containing P. When InP

is grown on it for the clad layer, melt back develops, making

crystal growth difficult. This has also been tried with the

liquid phase method [33,42], with threshold electric current

density of around 8kA/cm 2 pm. However, with molecular'beam

epitaxy, the possibility of constructing wafers with 5kA/cm 2

pm has been demonstrated [43]; aside from the practicability of

this method of construction, it is noteworthy that lasers of

fairly uniform performance level could be constructed for the

entire wavelength of Gaxlnl_xASyP.

As another material, GaAIAsSb/GaSb lasers with low threshold

values have been reported. As noted previously_ with _

Gal_xAlxASySbl_y, luminescence is possible for the range of

0.8<Xg<l.7 um. However, recently those with low threshold values
of electric current density of ikA/cm 2 or less and range of

1.25 _ 1.4 pm have been constructed [64]; also, a Gaxlnl_xASySbl_y/

GaSb (basal plate GaSb) laser has been constructed, obtaining

X=I.9 pm, Jth=900A/cm 2 at 77K
[65].

For construction aimed at mode stabilization, various types

of embedded stripe construction as shown in Figure 7 have been

proposed and tested, and it is likely that the development of

lasers with stable horizontal modes, with wave conduction capabil-

ity by different rates of refraction, would proceed. Also,

as a method of construction aimed at the unification and stabil-

ization of the vertical mode, a distribution Bragg reflector

(DBR) laser•that utilizes the primary diffractive lattice has

been constructed on a trial basis [66], with which detailed
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studies on thermal characteristics havebeen carried out.

The optical cumulative circuit with InP as the basal plate is

considered by the authors to increase its importance in optical

circuit technology of the future. To serve as a basis of this

technique, studies on chemical etching methods and on identifica-

tion of (011) and (01T) directions with (i00) InP basal plate

have been carried out.

4. Luminescent diodes

Development of luminescent diodes (LED) of I _m band has

been started since around 1977. As with semiconductor lasers,

many of these diodes have the double hetero structure bf Gaxlnl_ x

ASyPl_y/InP [29, 69, 72]. The type of wafer is basically similar
to that for lasers, as shown in Figure 6. Figure 12 shows an

example of the structure of a plane luminescent type GalnAsP/

InP LED. Since the InP basal plate is transparent for the lumin-

escent wavelength, it could be used as a window without modifica-

tion. Frequently the activated layer in these diodes is not

covered with doping on purpose. Power output is i [70] - 3mW

[71], external quantum efficiency is i [70] -3 [711%. Diodes /34

with a wavelength band of I.i [68] - 1.5 _m [29] have been

constructed, and half-value widths of the luminescent spectra
O

A1 are about 1,000-1,200A. The relative value AI/_=0.07-0.08

is appreciably greater than 0..04'0.05 for GaAs LED. Modulation

characteristics and combination with optical fibers have also

been studied, and the cutoff frequency has been determined to

be 60-70MHz [69]. A method to make the power output window into

a monolithic, convex lens shape has also been proposed [72],

5. Optical detector

The sensitivity of the Si photodiode used in the 0.85 um

wave length band deteriorates markedly for wavelengths greater
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than I _m. It is inevitable, theoretically as well, that

in the longer wavelength band, effects of noise become greater.

Heretofore, a Ge photodiode has been used as the optical

detector corresponding to this wave length band, but there are

problems of dark electric current and loud excessive noise, so

that three and four-dimensional Crystals have begun to be

studied as photodiode material with low noise and fast height

elevation close to 50 ps [73].

_light!

cross sectioni- LinP(. j '
.... .F_GaI.AsI'

lumlnescent .p_O_tlonj_ .........>_l.P{p) .

Figure 12. Example of construction of GaInAsP/
InP luminescentdiode.

Figure 13. Sensitivity of photodiode for I _m
band
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Figure 14. Measured values of dark electric
current density of photodiode

Figure 13 shows wavelength sensitivity of photodiodes

made of Ge [74] and Ga0.47' In0.53 As [75, 76]. The sensitivity

of Ge is at around 1.5 _m, and avalanche photodiodes (APD) and

P-i-n construction photodiodes have been manufactured for

practical use. However, as shown in Figure 14, dark electric

current is 10-4 (A/cm2), which is exceedingly greater than 2.5

x 10-9(A/cm2) • for Si [75]. Also, since ionization coefficients

for electrons and positive hole are approximately equal, excess

noise at the time of avalanche amplification is great.

Four dimension crystals used in lasers as well, such as

Gaxlnl_xASyPl_y and three dimension crystals Ga0.47 In0.53
with y=l, have been studies as the material for optical detectors

[73, 75-82]. Figure 13 shows quantum efficiency of a Ga0.47

In0.53 As photodiode, which has sensitivity to the largest wave-

length, among all the materials noted above. There is a report

that with this material, dark electric current could be reduced

to around 4-7 x 10-6 (A/cm2)[75], appreciably such than that for

Ge. Also, it has been said that the ionization coefficients
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at the time of avalancl_ amplification are greater for electrons

than for positive holes [77]. If four-dimensional crystals

with X_0.46 are used, the width of the exclusion band increases

and the maximum sensitivity moves to the short wave side [76].

Research on optical detectors for larger wavelengths,

especially on APD, has just begun. It appears that GalnAs becomes

low noise, but there are still some problems such as large

transposition density of InP used for the basal plate.

At high speed, effects of dark electric current are small.

With 32M bit/s PCM and when dark electric current is I00 nA,

the deterioration of reception electric power of GeAPD'is 4.SdB

[16], so that requirements are somewhat less rigorous for the

optical wave detector with high speed PCM. Ge has a long history

in crystallization and economical potentials, so that it is

being re-evaluated as a photodiode for long-wave optical detectors

suitable for practical use. At least Ge photodiode could be used

in the optical detector for longer wavelengths. Also, high

performance detectors appear to be possible by the use of new

materials such as GalnAs. Thus, the future for the optical detector

for the I _m band is promising.

6. Conclusion

In this commentary, we summarize the state of research thus

far on semiconductor devices for the 1-1.8 _m band_ the so_called

long wavelength band, used in optical communication_ which current_-

ly is attracting attention. In this wavelength band, because

of the characteristics of optical fibers that serve as the route

of transmission, semiconductor laser materials that serve as

the light source were developed first, followed by the study of

the optical detector. This sequence is the reverse of that for

the 0.85 _m band. However, the exceedingly low transmission loss

of 0.2 dB/km attracted a large number of researchers to make
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efforts in the development of optical devices, so that at

present, devices that could be considered as systems are being

materialized. Thus, with GalnAsP/InP, long durability devices

as semiconductor lasers with _=1.3 _m have been constructed,

and the same material may be able to be utilized for 1.1-1.67

_m. (After the completion of this text and while waiting for

printing, CW operation at room temperature of a 1.5-1.6 _m band

laser has been achieved successfully by KDD, Telecommunication

Corporation, and Tokyo Engineering University). On the other

hand, it is inevitable that the optical detector becomes high

noise, but this is not detrimental for optical transmission.

Optical isolators for long wavelengths have been constructed

[20], and long-distance transmission experiments over I0 km

[83, 85] and 50 km [84] have been carried out; thus photo-

communication of the second generation appears to be able to be

established on appreciably good balance of devices.

However, in order to really utilize advantages of the long

wavelength band, it is necessary to have a large-scale multiple

wavelength communication, along with its requirements such as

optical cumulative circuits and optical exchangers. When these

are well studied, the dawn of the thir_ generation of optical

communication will become visible. Deep appreciation is extended

to those who provided their valuable research findings.
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